On Maximal Tori in the Contactomorphism Groups of Regular Contact Manifolds

نویسنده

  • EUGENE LERMAN
چکیده

By a theorem of Banyaga the group of diffeomorphisms of a manifold P preserving a regular contact form α is a central S extension of the commutator of the group of symplectomorphisms of the base B = P/S. We show that if T is a Hamiltonian maximal torus in the group of symplectomorphism of B, then its preimage under the extension map is a maximal torus not only in the group Diff (P, α) of diffeomorphisms of P preserving α but also in the much bigger group of contactomorphisms Diff (P, ξ), the group of diffeomorphism of P preserving the contact distribution ξ = kerα. We use this (and the work of Hausmann, and Tolman on polygon spaces) to give examples of contact manifolds (P, ξ = kerα) with maximal tori of different dimensions in their group of contactomorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Tori in Contactomorphism Groups

I describe a general scheme which associates conjugacy classes of tori in the contactomorphism group to transverse almost complex structures on a compact contact manifold. Moreover, to tori of Reeb type whose Lie algebra contains a Reeb vector field one can associate a Sasaki cone. Thus, for contact structures D of K-contact type one obtains a configuration of Sasaki cones called a bouquet such...

متن کامل

Maximal Tori in the Contactomorphism Groups of Circle Bundles over Hirzebruch Surfaces

In a recent preprint Yael Karshon showed that there exist non-conjugate tori in a group of symplectomorphisms of a Hirzebruch surface. She counted them in terms of the cohomology class of the symplectic structure. We show that a similar phenomenon exists in the contactomorphism groups of pre-quantum circle bundles over Hirzebruch surfaces. Note that the contact structures in question are fillab...

متن کامل

Isometry-invariant geodesics and the fundamental group

We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formulate a generalization of the isometry-invariant geodesics problem, and a generalization of the cele...

متن کامل

ar X iv : m at h / 04 05 36 9 v 2 [ m at h . D G ] 1 9 N ov 2 00 4 CONTACT SCHWARZIAN DERIVATIVES DANIEL

H. Sato introduced a Schwarzian derivative of a contactomorphism of R 3 and with T. Ozawa described its basic properties. In this note their construction is extended to all odd dimensions and to non-flat contact projective structures. The contact projective Schwarzian derivative of a contact projective structure is defined to be a cocycle of the contactomorphism group taking values in the space...

متن کامل

On the convergence of solutions to a difference inclusion on Hadamard manifolds

‎The aim of this paper is to study the convergence of solutions of the‎ ‎following second order difference inclusion‎ ‎begin{equation*}begin{cases}exp^{-1}_{u_i}u_{i+1}+theta_i exp^{-1}_{u_i}u_{i-1} in c_iA(u_i),quad igeqslant 1\ u_0=xin M‎, ‎quad‎ ‎underset{igeqslant 0}{sup} d(u_i,x)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002